Cryo Focused Ion-Beam Scanning Electron Microscopy (cryo FIB-SEM) enables three-dimensional and nanoscale imaging of biological specimens via a slice and view mechanism. The FIB-SEM experiments are, however, limited by a slow (typically, several hours) acquisition process and the high electron doses imposed on the beam sensitive specimen can cause damage. In this work, we present a compressive sensing variant of cryo FIB-SEM capable of reducing the operational electron dose and increasing speed. We propose two Targeted Sampling (TS) strategies that leverage the reconstructed image of the previous sample layer as a prior for designing the next subsampling mask. Our image recovery is based on a blind Bayesian dictionary learning approach, i.e., Beta Process Factor Analysis (BPFA). This method is experimentally viable due to our ultra-fast GPU-based implementation of BPFA. Simulations on artificial compressive FIB-SEM measurements validate the success of proposed methods: the operational electron dose can be reduced by up to 20 times. These methods have large implications for the cryo FIB-SEM community, in which the imaging of beam sensitive biological materials without beam damage is crucial.
translated by 谷歌翻译
The Me 163 was a Second World War fighter airplane and a result of the German air force secret developments. One of these airplanes is currently owned and displayed in the historic aircraft exhibition of the Deutsches Museum in Munich, Germany. To gain insights with respect to its history, design and state of preservation, a complete CT scan was obtained using an industrial XXL-computer tomography scanner. Using the CT data from the Me 163, all its details can visually be examined at various levels, ranging from the complete hull down to single sprockets and rivets. However, while a trained human observer can identify and interpret the volumetric data with all its parts and connections, a virtual dissection of the airplane and all its different parts would be quite desirable. Nevertheless, this means, that an instance segmentation of all components and objects of interest into disjoint entities from the CT data is necessary. As of currently, no adequate computer-assisted tools for automated or semi-automated segmentation of such XXL-airplane data are available, in a first step, an interactive data annotation and object labeling process has been established. So far, seven 512 x 512 x 512 voxel sub-volumes from the Me 163 airplane have been annotated and labeled, whose results can potentially be used for various new applications in the field of digital heritage, non-destructive testing, or machine-learning. This work describes the data acquisition process of the airplane using an industrial XXL-CT scanner, outlines the interactive segmentation and labeling scheme to annotate sub-volumes of the airplane's CT data, describes and discusses various challenges with respect to interpreting and handling the annotated and labeled data.
translated by 谷歌翻译
Micro aerial vehicles (MAVs) hold the potential for performing autonomous and contactless land surveys for the detection of landmines and explosive remnants of war (ERW). Metal detectors are the standard tool, but have to be operated close to and parallel to the terrain. As this requires advanced flight capabilities, they have not been successfully combined with MAVs before. To this end, we present a full system to autonomously survey challenging undulated terrain using a metal detector mounted on a 5 degrees of freedom (DOF) MAV. Based on an online estimate of the terrain, our receding-horizon planner efficiently covers the area, aligning the detector to the surface while considering the kinematic and visibility constraints of the platform. For resilient localization, we propose a factor-graph approach for online fusion of GNSS, IMU and LiDAR measurements. A simulated ablation study shows that the proposed planner reduces coverage duration and improves trajectory smoothness. Real-world flight experiments showcase autonomous mapping of buried metallic objects in undulated and obstructed terrain. The proposed localization approach is resilient to individual sensor degeneracy.
translated by 谷歌翻译
Everting, soft growing vine robots benefit from reduced friction with their environment, which allows them to navigate challenging terrain. Vine robots can use air pouches attached to their sides for lateral steering. However, when all pouches are serially connected, the whole robot can only perform one constant curvature in free space. It must contact the environment to navigate through obstacles along paths with multiple turns. This work presents a multi-segment vine robot that can navigate complex paths without interacting with its environment. This is achieved by a new steering method that selectively actuates each single pouch at the tip, providing high degrees of freedom with few control inputs. A small magnetic valve connects each pouch to a pressure supply line. A motorized tip mount uses an interlocking mechanism and motorized rollers on the outer material of the vine robot. As each valve passes through the tip mount, a permanent magnet inside the tip mount opens the valve so the corresponding pouch is connected to the pressure supply line at the same moment. Novel cylindrical pneumatic artificial muscles (cPAMs) are integrated into the vine robot and inflate to a cylindrical shape for improved bending characteristics compared to other state-of-the art vine robots. The motorized tip mount controls a continuous eversion speed and enables controlled retraction. A final prototype was able to repeatably grow into different shapes and hold these shapes. We predict the path using a model that assumes a piecewise constant curvature along the outside of the multi-segment vine robot. The proposed multi-segment steering method can be extended to other soft continuum robot designs.
translated by 谷歌翻译
Integration of multiple sensor modalities and deep learning into Simultaneous Localization And Mapping (SLAM) systems are areas of significant interest in current research. Multi-modality is a stepping stone towards achieving robustness in challenging environments and interoperability of heterogeneous multi-robot systems with varying sensor setups. With maplab 2.0, we provide a versatile open-source platform that facilitates developing, testing, and integrating new modules and features into a fully-fledged SLAM system. Through extensive experiments, we show that maplab 2.0's accuracy is comparable to the state-of-the-art on the HILTI 2021 benchmark. Additionally, we showcase the flexibility of our system with three use cases: i) large-scale (approx. 10 km) multi-robot multi-session (23 missions) mapping, ii) integration of non-visual landmarks, and iii) incorporating a semantic object-based loop closure module into the mapping framework. The code is available open-source at https://github.com/ethz-asl/maplab.
translated by 谷歌翻译
多机构增强学习(MARL)已成为解决分散决策问题的有用方法。近年来提出的许多突破性算法一直在稳步增长。在这项工作中,我们仔细研究了这一快速发展,重点是在合作Marl的大量研究中采用的评估方法。通过对先前工作进行详细的荟萃分析,涵盖了从2016年至2022年接受出版的75篇论文,我们引起了人们对真正进步率的质疑的令人担忧的趋势。我们在更广泛的背景下进一步考虑了这些趋势,并从单一AGENT RL文献中获得了有关类似问题的灵感,这些建议以及仍然适用于MARL的建议。将这些建议与我们分析的新见解相结合,我们提出了合作MARL的标准化绩效评估方案。我们认为,这样的标准协议,如果被广泛采用,将大大提高未来研究的有效性和信誉,使复制和可重复性更加容易,并提高该领域的能力,通过能够通过能够准确评估进度的速度进行跨不同作品的合理比较。最后,我们在我们的项目网站上公开发布荟萃分析数据,以供未来的评估研究:https://sites.google.com/view/marl-andard-protocol
translated by 谷歌翻译
近年来,临床文本处理引起了越来越多的关注。另一方面,访问敏感的患者数据仍然是一个巨大的挑战,因为如果没有法律障碍,就无法共享文本,而无需删除个人信息。有许多技术可以修改或删除与患者相关的信息,每种信息都具有不同的优势。本文使用对应于五个不同NLP任务的多个数据集研究了不同匿名技术对ML模型性能的影响。提出了一些学习和建议。这项工作证实,特别强大的匿名技术导致了大量的性能下降。除此之外,大多数提出的技术并不是基于相似性搜索的重新识别攻击的安全性。
translated by 谷歌翻译
多实施学习(MIL)被广泛用于对病理整体幻灯片图像(WSIS)的计算机辅助解释,以解决缺乏像素或贴片的注释。通常,这种方法直接应用“自然图像驱动”的MIL算法,该算法忽略了WSIS的多尺度(即金字塔)性质。现成的MIL算法通常部署在单个WSIS(例如20x放大倍率)上,而人类病理学家通常以多尺度的方式汇总全球和局部模式(例如,通过放大不同大型)。在这项研究中,我们提出了一种新型的跨尺度注意机制,以明确地将尺度间相互作用汇总到单个MIL网络的克罗恩病(CD)(CD),这是炎症性肠病的一种形式。本文的贡献是两个方面:(1)提出了一种跨尺度注意机制,以从不同分辨率的多尺度相互作用汇总特征; (2)生成差异多尺度注意的可视化,以定位可解释的病变模式。通过训练来自20名CD患者的约250,000 H&E染色的上升结肠(AC)斑块,在不同尺度上训练30个健康对照样品,我们的方法在曲线下(AUC)得分为0.8924,与基线模型相比达到0.8924。官方实施可在https://github.com/hrlblab/cs-mil上公开获得。
translated by 谷歌翻译
在这项工作中,我们介绍了患者生成的含量中第一个用于德国不良药物反应(ADR)检测的语料库。该数据包括来自德国患者论坛的4,169个二进制注释的文档,用户谈论健康问题并从医生那里获得建议。正如该领域的社交媒体数据中常见的那样,语料库的类标签非常不平衡。这一主题不平衡使其成为一个非常具有挑战性的数据集,因为通常相同的症状可能会有几种原因,并且并不总是与药物摄入有关。我们旨在鼓励在ADR检测领域进行进一步的多语性努力,并使用基于多语言模型的零和少数学习方法为二进制分类提供初步实验。当对XLM-Roberta进行微调首先在英语患者论坛数据上,然后在新的德国数据上进行微调时,我们的正面级别的F1得分为37.52。我们使数据集和模型公开可供社区使用。
translated by 谷歌翻译
物联网(物联网)正在通过弥合信息技术(IT)和运营技术(OT)之间的差距来改变行业。机器正在与连接的传感器集成在一起,并通过智能分析应用程序管理,加速了数字化转型和业务运营。将机器学习(ML)带到工业设备是一个进步,旨在促进IT和OT的融合。但是,在工业物联网(IIOT)中开发ML应用程序提出了各种挑战,包括硬件异质性,ML模型的非标准化表示,设备和ML模型兼容性问题以及慢速应用程序开发。在这一领域的成功部署需要深入了解硬件,算法,软件工具和应用程序。因此,本文介绍了一个名为ML应用程序的名为“语义低代码工程”(SELOC-ML),该框架建立在低代码平台上,以利用语义Web技术来支持IIOT的ML应用程序的快速开发。 SELOC-ML使非专家能够轻松地模拟,发现,重复使用和对接ML模型和设备。可以根据匹配结果自动生成项目代码在硬件上部署。开发人员可以从称为食谱的语义应用模板中受益,从而快速原型最终用户应用程序。与工业ML分类案例研究中的传统方法相比,评估证实了至少三倍的工程努力,显示了SELOC-ML的效率和实用性。我们分享代码并欢迎任何贡献。
translated by 谷歌翻译